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We consider the ARTl neural network architecture. It is shown that in 
the fast learning case, an ARTl network that is repeatedly presented 
with an arbitrary list of binary input patterns, self-stabilizes the recog- 
nition code of every size-1 pattern in at most 1 list presentations. 

1 Introduction 

A neural network architecture for the learning of recognition categories 
was derived by Carpenter and Grossberg (1987). This architecture was 
termed ARTl in reference to the adaptive resonance theory introduced by 
Grossberg (1976). It was shown in Carpenter and Grossberg (1987) that 
ARTl self-organizes and self-stabilizes its recognition codes in response 
to arbitrary orderings of arbitrarily many and arbitrarily complex binary 
input patterns. 

In this paper, only the fast learning case is considered. We show that 
if ARTl is repeatedly presented with a list of binary input patterns it 
self-stabilizes the recognition code of every size-1 pattern in at most 1 list 
presentations. (A size-1 input pattern is a binary vector containing 1 com- 
ponents with value one and the remaining components with value zero.) 
An immediate consequence of this result is that if the input patterns in 
the input list can be represented by binary vectors of dimensionality M ,  
with the size-0 and size-M vectors excluded from the list (one of our 
modeling assumptions in Section Z), then ARTl learns and recognizes 
the list in at most M - 1 list presentations. This result is valid indepen- 
dent of the ordering with which the input patterns are presented within 
the list. 
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In short, this paper provides useful upper bounds on the number of 
list presentations required to learn a list of input patterns presented re- 
peatedly to ARTl. The modeling assumptions are presented in Section 2. 
In the same section the tightness of the upper bounds is exploited by 
examining two extreme examples. In Section 3, the results are stated and 
proven. Concluding remarks are contained in Section 4. 

2 Model - Preliminaries 

A complete description of ARTl and the theorems that give insight into 
its operation are provided in Carpenter and Grossberg (1987). An ARTl 
network consists of two layers of neurons (nodes), called the FI and F2 
layers. Input patterns are presented at the F1 layer. Every node in the 
Fl layer is connected via bottom-up traces to all of the nodes in the F2 
layer. Every node in the Fi layer is likewise connected to all of the nodes 
in the F1 layer via top-down traces. The results of this paper are proven 
under the following assumptions: . 

Al: All hypotheses of section 18 in Carpenter and Grossberg (1987) hold 

A2: L - 1 5 111-' 
A3: 1 5 111 5 M - 1 

A4: F2 has enough nodes to code all the patterns at every presentation 

where 111 is the size of an arbitrary pattern I in the input list, M is the 
number of nodes in the Fl layer, and L is a parameter associated with 
the adaptation of bottom-up and top-down traces in the ARTl neural 
network architecture. 

The top-down traces that emanate from a node in the F2 layer are 
called templates. Assume that a pattern I which belongs to a list of binary 
input patterns is presented to ARTl. Furthermore, assume that at the nth 
presentation of the list, pattern I activates some node k in the F2 layer and 
furthermore k codes I .  We denote by V& the template that corresponds 
to node k after k has learned I .  We say that I is coded by V;tn or that VL, 
has coded the pattern I ;  V:n is referred to as a learned template. To prove 
our results, the templates of ARTl need to be considered either prior to 
a pattern's presentation, or after a template has coded a pattern. For the 
purposes of the results discussed in this paper, the ARTl templates can 
always be thought of as binary vectors. Actually, when the top-down 
trace of a template is taken as either zero or one it means that the trace is 
either small enough, or large enough to satisfy the 2 / 3  Rule of the ARTl 
network (for more details see Carpenter and Grossberg 1987). 

Consider a pattern I in the list and a template V corresponding to an 
F2 node. There is a one-to-one correspondence between the components 

(one of these hypotheses is that fast learning occurs) 

of the input list 



504 M. Georgiopoulos, G. L. Heileman, and J. Huang 

of the binary vectors I and V .  A component of I corresponds to a com- 
ponent of V if both of them activate the same F1 node. We define, as in 
Carpenter and Grossberg (1 9871, three types of learned templates with 
respect to an input pattern I :  subset templates, superset templates, and 
mixed templates. The components of a subset template V satisfy V C I .  
They are one only at a subset of the corresponding I components. The 
components of a superset template V satisfy V 3 I .  They are one at 
all the corresponding components of I that are one, as well as at some 
components of I that are zero. The components of a mixed template V 
are one at some, but not all of the corresponding I components, as well 
as at some of the components of I that are zero. In this case, the set of 
the V components that are one is neither a subset nor a superset of the 
set of the I components that are one. Sometimes it is convenient to refer 
to a pattern I as being a subset, superset or mixed pattern with respect 
to a template V if I C V ,  I 3 V ,  or V is a mixed template with respect 
to I .  Besides the learned templates described above, we also define a 
template V to be an uncommitted template if it corresponds to a node that 
has not coded any pattern yet. We assume that the components of an 
uncommitted template consist of all ones. 

Since an input pattern I is a binary vector and a template V can be 
thought of as a binary vector, we define by 111 and IVI the size of the 
binary vectors I and V ,  respectively. We also define a template V to be 
a stable templafe if and only if, after its creation, it cannot be destroyed 
by future pattern presentations. We say, as in Carpenter and Grossberg 
(19871, that a pattern I has direct access to template V if presentation of 
I leads at once to activation of the F2 node with corresponding template 
V ,  and this template codes 1 on that trial. Finally, if I is a pattern of the 
input list and V is a template of ARTI, we define I n V as the binary 
vector with ones only at components where both the I and V components 
are one, and zeros at all other components. 

Let us now present two examples that are extreme cases and demon- 
strate clearly the tightness of the bounds mentioned in Section 1. To 
follow these examples the reader needs to be aware of Theorems 1 and 7 
in Carpenter and Grossberg (1987). 

In the first example, ART1, with a vigilance parameter p = 1 is 
repeatedly presented with a nested list of input patterns in order of 
decreasing size. In particular, the input list, {II, I,, . . . , IL~-~}, is such 
that 11 c I2 c . . . c I M - ~  with 141 = k ,  and it is presented in order 
Iw-1, I M - ~ ,  . . . , I1, I M - 1 ,  I M - 2 , .  . . , I,, etc. Then, in the first list presenta- 
tion only template 6 = I1 is created (see Theorem 7 of Carpenter and 
Grossberg 1987). Template Vl cannot be destroyed thereafter because all 
patterns are supersets or equal to template K .  Hence, template V, is a 
stable template. In list presentations 2 2 pattern Zl will have direct ac- 
cess to template I4 (see Theorem 1 in Carpenter and Grossberg 1987). As 
a result, the recognition code of pattern I1 (i.e., 6) self-stabilizes in ex- 
actly one list presentation. In the second list presentation only template 
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V2 = 12 is created. Template V, cannot be destroyed thereafter because all 
patterns other than pattern 11 are supersets or equal with V2, and pattern 
1, is coded by the stable template q. In list presentations 2 3 pattern 
1 2  will have direct access to template Vz. Hence, the recognition code of 
pattern 12 (i.e., Q) self-stabilizes in exactly two list presentations. Work- 
ing similarly for the rest of the input patterns we can prove that ARTl 
self-stabilizes the code of a size-1 (3 5 1 5 M - 1) pattern in exactly 1 list 
presentations. This example corresponds to the extreme case where the 
upper bound on the number of list presentations required by ARTl to 
self-stabilize the recognition codes of size-1 patterns is attained. 

In the second example, ARTl, with a vigilance parameter p = 1, is 
presented with a nested list of input patterns in order of increasing size. 
The input list, {Zl, 1 2 , .  . . , I A ~ - , } ,  is such that Il c 12 c . . . c 1~ f -1  with 
( I i ; \  = k ,  and it is presented in order I1 ,12 , .  . . , I M - ~ ,  I I ,  I,,. . . , I M - I ,  etc. 
Then, in the first list presentation the templates. 8 = Il, 1 5 1 5 M - 1 
are created. In the second list presentation pattern It, 1 < 1 5 M - 1, 
will have direct access to template 8, 1 5 1 5 M - 1. As a result, ARTl 
self-stabilizes the code of every pattern in the input list in exactly one list 
presentation. This example is another extreme case where the number 
of list presentations required by ARTl to self-stabilize the recognition 
codes of size4 patterns attains its lowest possible value (i,e., one list 
presentation). 

Carpenter and Grossberg (1987) made the following conjecture: Under 
their hypotheses of section 18, if Fz has at least N nodes, then each 
member of a list of N input patterns that is presented cyclically to ART1 
will have direct access to an F2 node after at most N list presentations. In 
this paper, under assumptions A1 through A4 we prove a much stronger 
result, at least for most cases of interest. The result states that the size 
of the pattern determines the upper bound on the number of pattern 
presentations required by ART1 to learn the pattern. In particular, a size- 
1 (1 < 1 < M - 1) pattern requires at most 1 list presentations. One of the 
cases where the conjecture is stronger corresponds to the situation where 
the input list contains N patterns with N < A4 - 1. Considering though 
that N is an integer between 2 and 2M - 2 (patterns of size-0 or size-M 
are excluded), the result of this paper is stronger than the conjecture for 
most cases of interest. 

3 Results 

We first state two Lemmas that are going to be useful for the proof of 
our results. Lemma 1 is valid under assumptions Al-A3. 

Lemma 1. Suppose that I is an arbitrary pattern from the input  list. Learned 
subset templates wi th  respect to I are searched first in order of decreasing size 
(i.e., the closest learned subset template to I is searched first, and if it i s  reset, 
the next closest subset template to I is searched and so on) .  If all learned 
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subset templates are reset, then superset and mixed learned templates, as well 
as uncommitted templates are searched, not necessarily in that order. 

Lemma 1 is a shortened restatement of Carpenter and Grossberg's 
(1987) Theorem 7 and its proof can be found there. Let us now assume 
that an input pattern I is presented at Fl. The activity at F1 changes from 
0 to I .  Let us also assume that a node in F 2  with template V, is searched 
first. The activity at Fl changes to I n K .  If ~ I n V , ~ ~ I ~ ~ '  2 p then template 
V, codes pattern I .  If II n V,llIl-' < p ,  then the node with template 
V, is reset and another node in F 2  is searched. The parameter p ,  called 
vigilance, determines whether the top-down template of an F 2  node is 
a good match of the input pattern I .  It is obvious by the description of 
this reset mechanism, that if a template V, is searched first and reset (i.e., 
II n Vi IIIl-' < p )  then any other template 6 that is searched later will be 
reset if 11 n &[lI[-l 5 11 n b$lIIl-'. 

Lemma 2 is an immediate consequence of Lemma 1 and the above 
discussion. Lemma 2 is valid under assumptions A1-A3. 

Lemma 2. Suppose that I is an arbitrary pattern from the input list, V, is a 
learned subset template (with respect to I ) ,  and V, is an arbitra y mixed learned 
template (with respect to I ) ,  prior to I's presentation. Then, if Vi is reset and 
6 is searched, V, will be reset if 

Our results are now presented in a form of a theorem. The theorem 
is valid under assumptions Al-A4. 

Theorem 1. Consider an arbitrary list of binary input patterns that is repeat- 
edly presented to ART1. Then, in list presentations > x, where x > 2: 

T1: A pattern I of size 2 x cannot be coded by a mixed template V ,  such that 
I lnv l5x - -1 .  
T 2  A pattern I of size 5 x - 1 will have direct access to a stable template that 
has been created in list presentations 5 x - 1. 

T1 is obviously true for z > M ,  because according to the assumptions 
of the theorem there are no patterns of size 2 M in the input List. Hence, if 
we prove T1 for 2 5 x 5 A4 - 1 we have proven T1 for all x. Furthermore, 
it is easy to see that if we prove T2 for 2 5 x 5 A 4  we have proven T2 
for all x. We will prove T1 for 2 5 x 5 M - 1 and T2 for 2 5 x 5 A4 
in two steps. In step 1, we prove that T1 and T2 are valid for x = 2. In 
step 2, we will show that for every R, 3 5 n 5 M ,  the assumption that 
T1 and T2 are valid for all 2 5 x 5 n - 1 implies their validity for x = n. 
This iterative procedure guarantees the validity of T1 and T2 for all x, 
such that 2 5 x 5 M ,  and consequently the validity of the theorem for 
all x 2 2. 
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Step 1. Prove that T1 and T2 are valid for z = 2. 
Consider a pattern I of size 2 2. At all times, prior to Z’s appearance 

in list presentations 2 2, there exists a learned subset template V of Z. 
Hence, according to Lemmas 1 and 2, Z cannot be coded by a mixed 
template of size 5 1. This proves T1 at z = 2. 

Now assume that a pattern I of size-1 has been coded by the template 
V& in the first list presentation. V& cannot be destroyed thereafter; 
hence, V;tl is a stable template. Furthermore, after the creation of V; 
no other template equal to V 4  can be created (see Lemmas 1 and 2). As 
a result, in list presentations 2 2, the size-1 pattern Z will have direct 
access to its equal V,’j template (see Lemma 1). The stable template VA 
was created in the first list presentation. This proves T2 at T = 2. 

Step 2. Pick an n such that 3 5 71 5 M and assume that T1 and T2 are 
valid for every I, such that 2 5 II’ 5 n - 1. It will now be shown that T1 
and T2 are true for 5 = 71. 

Proof of T1 at I = n,. Consider a pattern I of size IZ( 2 n. Assume that I 
was coded by VLIPl in list presentation n - 1 and \Vc!-l I = 1 .  Two cases 
are distinguished: 

(a) 1 5 n - 1. The template V;t,-, can be destroyed by either (1) a 
size-k ( k  < 1 )  pattern, or by (2) a mixed pattern f that is coded by Vcn-, ,  
where I I^  n V;fjP1I = k ( k  < 1). All size-k ( k  < 1 5 71, - I )  patterns have 
direct access to stable templates that have been created by the end of list 
presentation n - 2. This is due to the validity of T2 for all z such that 
2 5 z 5 n-1; hence, (1) cannot happen. Furthermore, in list presentations 
2 n - 1, (2) cannot happen either, due to the validity of TI for all z such 
that 2 5 I 5 n - 1. As a result, the VTn-, template of size 1 5 n - 1 is 
stable, and pattern I will be coded in list presentations 2 72 by the subset 
template V:n--l, or by some other subset template of size larger than or 
equal to the size of V:,?-, (see Lemma 1). In short, I cannot be coded by 
any mixed template. 

(b) 1 2 n. The template VclP1 can be refined to a size-k template, 
k 2 n - 2, prior to Z’s appearance in future list presentations; k cannot 
be smaller than n - 1 due to the validity of T1 and T2 at all s such that 
2 5 s 5 n - 1. So, in list presentations 2 n, I will always have access 
to a subset template of size at least n - 1. Hence, in list presentations 
2 n, the pattern Z cannot be coded by a mixed template V ,  such that 
IZ n VI 5 n - 1 (see Lemma 2). The above arguments prove T1 at :I: = n. 

Proof of T2 at .T = n. The result is obvious for a pattern Z of size < 72 - 1 
due to the validity of T2 for all .I: such that 2 5 2 5 n - 1. Let us now 
take a pattern Z of size I I I = n - 1. Suppose, once more, that I was coded 
by Vlr,Pl in list presentation n - 1 and lV2T-,l = 1. We distinguish two 
cases: 

(a) 1 = n - 1. Due to the discussion in the proof of TI for J: = n, 
case (a), we conclude that the template VCIP1 is stable. Furthermore, after 
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the creation of the template V;fn-, = I ,  no other template equal to V;n-l 
can be created (see Lemmas 1 and 2). As a result, in list presentations 2 n 
the size+-1) pattern, I ,  has direct access to its equal V&, template (see 
Lemma 1). The stable V;fn-, template was created in a list presentation 
I n - 1 .  

(b) 1 < n - 1. Note that in this case, VTn-, can code I .  The template 
V&, is stable, and new size-C templates (1 5 5 5 n--2) cannot be created 
in list presentations 2 n - 1, due to the validity of T1 and T2 for all s such 
that 2 5 s I n - 1. A template equal to I can be created prior to the end 
of list presentation n - 1. After the end of list presentation n - 1, knowing 
that 1 can be coded by the stable subset template VZnp1, a template equal 
to I can be created only if a pattern i is coded by a mixed template V 
such that i n V = I ;  but this is impossible due to the validity of T1 at 
z = n as proved above. If a template equal to I is created prior to the end 
of list presentation n - 1, then this template is stable [see the discussion 
in the proof of T1 at z = n, case (a)]. No other template equal to I will 
be created thereafter (see Lemmas 1 and 2). Hence, in list presentations 
2 n either the stable template I or the stable template Vzn-, will code 
pattern I .  In both cases, the stable template that codes I is created in 
list presentations I n - 1. The proof of T2 at z = n is now complete. 
Consequently, the theorem is true 0. 

Note: As mentioned before, the proof of T1 at z = M is obvious 
because the assumptions of the theorem exclude patterns I of size greater 
than or equal to M .  As a result, for the proof of T1 at z = M ,  it is not 
necessary to go through the arguments presented in the proof of T1 for 
2 < M .  

In the following, the conclusions of the theorem, as well as certain im- 
portant byproducts of its proof, are presented as properties of learning in 
the ARTl network. Once more, it is assumed that an arbitrary list of bi- 
nary input patterns is repeatedly presented to ARTl. In list presentations 
2 z, where z 2 2, learning in ARTl has the properties: 

P1: A pattern I of size 2 z cannot be coded by a mixed template V ,  such 

P 2  A pattern Z of size 5 z - 1 will have direct access to a stable template, 

P3: Size-(z - 1) templates cannot be created. 

P4: Size-a: templates cannot be destroyed. 

The basic result of this work is that if an ARTl network is presented 
repeatedly with an arbitrary list of binary input patterns it self-stabilizes 
the recognition codes (templates) of size-l patterns in at most 1 list pre- 
sentations. 

This basic result is an immediate consequence of property P2. It is 
worth observing that properties Pl-P4 are valid independent of the order 

that ) I  n VI 5 3: - 1. 

that was created in list presentations 5 z - 1. 
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in which the input patterns are presented within the list. In addition, the 
ordering of the patterns within the list can change from one list presenta- 
tion to the next without affecting the validity of these properties. Finally, 
the basic result implies that if the input patterns can be represented by 
Af  input nodes, ARTl learns and recognizes the list after at most A4 - 1 
list presentations (size-0 and size-M patterns have been excluded from 
the input list). 

4 Conclusion 

An important self-organizing neural network, ARTl, introduced and an- 
alyzed by Carpenter and Grossberg (1987) was considered. The conver- 
gence properties of any neural network model is an issue of fundamental 
importance. Carpenter and Grossberg have proven a multitude of ARTl 
properties, including certain of its convergence characteristics. In this 
work, we concentrated only on the convergence properties of ARTl in 
the fast learning case. In particular, under the modeling assumptions of 
Section 2, a size-1 pattern from a list of binary input patterns presented 
repeatedly to ARTl has di,rect access to a stable code in at most 1 list 
presentations. Hence, each member of a list of binary input patterns pre- 
sented repeatedly to ARTl will have direct access to a stable code after 
at most A4 - 1 list presentations (size-0 and size-A4 patterns are excluded 
from the input list). Other useful properties associated with learning in 
the ARTl network were also shown. 
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